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What’s the Difference Between an NPU and a GPNPU? 

 

To understand the difference between an NPU (neural processing unit) and a GPNPU 

(general-purpose neural processing unit) let’s start with the NPU, a processing engine 

that accelerates machine learning (ML) workloads in System on Chip (SoC) designs. 

An NPU works alongside a CPU and a GPU and/or a DSP, on a chip (see Figure 1). 

The other more generalized processors call on the NPU to do specific compute-

intensive, matrix-math ML workloads, such as image classification acceleration or object 

detection. The NPU – sometimes called a Deep Learning Accelerator or Machine 

Learning Offload accelerator - is not a general-purpose core but instead it is narrowly 

optimized for the specific ML tasks, and therefore is much more efficient in both time 

and power consumption at those specific tasks.  

 

Figure 1. Conceptual block diagram of chip with NPU. 

  

NPUs are optimized to handle matrix multiplication – the basic building block of 

convolutional neural networks (CNNs) that are widely used in ML applications today – 
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blazingly fast but usually cannot run any code other than the ML graph code they were 

specifically optimized to run. Most NPUs today are essentially large arrays of hardwired, 

fixed-point multiply-accumulate (MAC) blocks running in parallel. Most NPUs in silicon 

today can only support a few dozen common neural network operators (or “graph 

layers”) – a handful each of convolution, pooling, and activation layers – among 

hundreds of operator types backed by the leading training frameworks such as 

Tensorflow and PyTorch.  

The graph layers running on the NPU usually comprise 90-95% of the expected 

compute cycles consumed in today’s most popular ML networks, and thus these ML 

accelerators do an admirable job of handling today’s known inference workloads. Other 

less performance-critical operators are partitioned to run on the other processor engines 

in the system, delivering acceptable system performance at the cost of upfront 

engineering effort.    

 

What Do the DSP and Realtime CPU Do? 

DSPs are vector processor cores intended to handle a wide variety of complex math 

operations efficiently. They are widely used in various applications requiring signal 

processing – voice or image pre-processing are prime examples. 

DSPs can be used to handle some matrix computations, but they are not optimized for 

them and tend to be inefficient compared to the matrix-optimized NPU accelerators 

described previously. Additionally, DSPs are typically highly utilized in the system 

running more conventional C code for signal pre- and post-processing, and thus have 

little performance headroom to handle heavy matrix computation. Therefore DSPs in 

most SoCs can augment the NPUs and run some but not all ML graph operators that 

the NPU doesn’t natively handle. 

The realtime CPU is responsible for controlling the overall inference functionality in the 

SoC. It coordinates ML inference workloads between the NPU, DSP, and the memory 

(used to store model weights). The realtime CPU is often the only programmable core in 

the inference subsystem that is exposed to the programmer. Because building and 

deploying multicore software development kits (SDKs) is a complex task, and because 

using a multicore SDK requires a complex learning cycle, most semiconductor vendors 

who employ CPU+DSP+NPU inference subsystems only expose the CPU to the 

developer for developer code, providing access to the DSP and NPU only via prebuilt 

application programming interfaces (APIs). If a developer needs an ML operator not 

supported in the APIs for the NPU or DSP, they can add a new ML operator on the CPU 

but generally not on the NPU or DSP. 

Because CPUs are general purpose, they can functionally run any code the 

programmer desires, but because they lack the vector performance of a DSP or the 
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matrix performance of an NPU, CPUs are poor performers for new ML operators. The 

programmer thus must choose between high-performance ML operators prebuilt with 

published APIs or slow ML operators added to the CPU. 

Distinctions must be made between the realtime CPU and an application-class CPU, 

both of which are shown in the conceptual block diagram in Figure 1. The latter is the 

larger CPU core running a complex operating system such as Linux, the application, 

and many other managerial functions. It usually has little involvement in real-time 

sensitive ML computations. 

 

Challenges of an NPU + DSP + Realtime CPU Architecture 

The following are just a few challenges that SoC developers are faced with and how 

they are presently addressed: 

Future Proof Designs 

Building SoCs that can handle known challenges is a good start but insufficient. The 

real challenge is to develop devices that are flexible enough to support some range of 

future requirements. 

ML technology is evolving rapidly. New models, libraries, and operators are introduced 

at a rapid pace. This makes it essential to develop devices optimized for ML inference 

that can be programmed to support new operators and algorithms when they become 

available. 

The existing heterogeneous SoC architecture approach described above is often not 

flexible enough to support new operators with the performance required. This is due to 

the inflexibility of hardwired NPUs that cannot be reconfigured. Developers tackle this 

challenge by adding code to the DSP or the realtime CPU to compensate for the NPU’s 

shortcomings.  

This approach is suboptimal in performance and creates a new set of problems. For 

example, splitting matrix operations between two disparate cores (NPU and CPU) 

penalizes inference latency and power dissipation since large data blocks have to 

traverse the chip going from one core to the other. 

Multiple Toolchains 

Dealing with multiple IP cores from multiple IP vendors invariably leads to reliance on 

multiple toolsets, creating many challenges. It is exceedingly difficult to debug a system 

using more than one debugger. As an example, it is virtually impossible to find quick 

answers to common debugging questions such as: 

• Where is the system bottleneck? 

• Why can’t I get the throughput that I expected? 
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• Why does inference latency vary so drastically 

• Is this problem a software bug or hardware issue? 

Unfortunately, presently there are no easy ways to address this problem. Diversity in 

toolsets invariably leads to longer development times. 

 

What’s a GPNPU? 

A general-purpose neural processing unit (GPNPU) uses a unified processor 

architecture that can handle matrix and vector operations and scalar (control) code in 

one execution pipeline. These workloads are traditionally handled separately by the 

NPU, DSP, and realtime CPU. The entire architecture is a single software-controlled 

core, allowing for the simple expression of complex parallel workloads. 

You can consider a GPNPU to be a hybrid combination of the NPU, DSP, and realtime 

CPU (see Figure 2). A GPNPU is entirely driven by code – both traditional DSP C++ 

code and ML graph code - empowering developers to continuously optimize the 

performance of their models and algorithms throughout the device’s lifecycle. 

 

Figure 2. Conceptual block diagram of an SoC with a Quadric GPNPU 
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Why Use a GPNPU instead of a NPU + DSP + Realtime CPU? 

There are several benefits of using a GPNPU: 

 

System Simplicity 

A GPNPU enables hardware developers to instantiate a single core that can handle an 

entire ML workload plus the typical DSP pre-processing and post-processing, signal 

conditioning workloads often intermixed with ML inference functions. Dealing with a 

single core drastically simplifies hardware integration and eases performance 

optimization. System design tasks such as profiling memory usage to ensure sufficient 

off-chip bandwidth are greatly simplified. 

 

Programming Simplicity 

With the right software, a GPNPU dramatically simplifies software development since 

matrix, vector, and control code can all be handled in a single code stream. ML graph 

code from the common training toolsets (Tensorflow, Pytorch, ONNX formats) is 

compiled by the software development toolkit (SDK) and can be merged with signal 

processing code written in C++, all compiled into a single code stream running on a 

single processor core. 

The GPNPU SDK can meet the demands of both hardware and software developers, 

who no longer need to master multiple toolsets from multiple vendors. The entire 

subsystem can be debugged in a single debug console. This can dramatically reduce 

code development time and ease performance optimization. 

This new programming paradigm also benefits the end users of the SoCs since they will 

have access to program all the GPNPU core resources. 

 

Future Proof Flexibility – With High Performance 

A Quadric GPNPU can run any algorithm written in C++ using a Compute Library (CCL) 

API. The CCL API enables programmers to rapidly express an algorithm in C++ that 

fully utilizes the high-performance matrix and vector capabilities of the GPNPU.  Unlike 

other IP solutions that tout “future proof” capability that runs new user code on a slow 

DSP or CPU, a GPNPU runs user-written ML operators or customer C++ kernels at the 

same high-speed, highly parallel performance levels as the “native” operators.   

This delivers future-proof flexibility with high-performance.  This is incredibly powerful 

for the SoC design team since SoC developers can quickly write code to implement new 
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neural network operators and libraries long after the SoC has been taped out. This 

eliminates fear of the unknown and dramatically increases a chip’s useful life. 

Again, this flexibility is extended to the end users of the SoCs. They can continuously 

add new features to the end products, giving them a competitive edge. 
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